- to empower & equip the next generation of change-makers

- to enhance Georgia Tech’s capacity to tackle global change challenges through education & research

- to serve communities across Georgia through public and private partnerships

- to position Georgia Tech as an international leader in global change solutions
GEORGIA SMART COMMUNITIES CHALLENGE

Smart Sea Level Sensor Project Team

Nick Deffley
Office of Resilience
Tom McDonald
David Donnelly

Dr. Kim Cobb
Dr. Russ Clark*
Dr. David Frost
Dr. Emanuele Di Lorenzo
Lalith Polepeddi
Jayma Koval
Tim Cone*
Andrea Rodgers

*at GT-Savannah

Randall Mathews
Dennis Jones
Kirk McElveen

Clinton Edminster
Coco Papy
Jennifer Bonnett

SAVANNAH savannahga.gov
Georgia Tech

CREATING THE NEXT®
Application Targets:

1) emergency planning & response

2) short- and long-term risk assessment & resilience planning

3) communication & building awareness

4) educational resources

CEMA, 2010
Georgia Smart partners
Background – Single Vantage Point

Matthew 2016

Irma 2017

NOAA Tide Gauge
Fort Pulaski

Russ.Clark@gatech.edu
USGS Flood Survey Data

- Deployed temporary sensors for both storm events
- Inspiration for our project
Not Just Hurricanes

Super Moon!

Popup Thunderstorms!

- highly localized
- need to send response assets to the right place

Russ.Clark@gatech.edu
Low Powered Wireless

LoRaWAN - Long Range Wide Area Network

• Longer range than WiFi
• Low power - 3-5 years battery life
• Low data rate

Low Cost

• < $2000 per gateway
 • 10-12 units to cover Chatham
• < $250 per sensor location

http://www.semtech.com/wireless-rf/lora-geolocation

Russ.Clark@gatech.edu
Gateway Deployment

4 Gateways Deployed in Chatham
- Whitemarsh Island
- Wilmington Island
- Tybee Island
- GT Savannah Campus
Gateway Coverage Testing

Drive Around Testing
• Where can we get a signal
• Which antennas work best

Russ.Clark@gatech.edu
Pretty good results

- Excellent across open water
- Tree canopy is a challenge
- Height of the gateway is most important factor
3 Sensors Deployed in Chatham

- Oatland Island Road
- Catalina Drive
- Walthour Road
 - Betz Creek
Sensor Results

Very good data from initial week of testing

- Confirmed behavior of ultrasonic over water
- Initial wave height calibration
- Good data on power consumption
Local Peak Times

King Tide Times
16 views
All changes saved in Drive

Sensor Locations
- Individual styles
- Tybee Island, Catalina Bridge
- Wilmington Island, Betz Cre...
- Fort Pulaski NOAA Buoy

Base map
Local Peak Times

King Tide on August 10, 2018

Water Level (mm)

Time (ET)

-500
0
500
1000
1500
2000

3:36:00 PM
4:48:00 PM
6:00:00 PM
7:12:00 PM
8:24:00 PM
9:36:00 PM
10:48:00 PM
12:00:00 AM
1:12:00 AM

Tybee Island
Wilmington Island, Betz Creek Bridge (#5)
Fort Pulaski (NOAA buoy)

8/10/18 8:06 PM, 1548
8/10/18 9:00 PM, 1585
8/10/18 8:14 PM, 1355

Russ.Clark@gatech.edu
Next Steps

Sensor Deployments
• Identify and prioritize 20 locations
• Complete testing and development
• Deploy over next 8-10 weeks

Gateway Deployments
• Identify and prioritize 6-8 locations

Work on applications to facilitate:
• Deployment, Monitoring, Reporting, Management, Crowd sourcing

Identify priority needs from the community!

Russ.Clark@gatech.edu